NCERT Solutions For Class 9th Maths Chapter 6 : Lines and Angles

- - CBSE

CBSE NCERT Solutions For Class 9th Maths Chapter 6 : Lines and Angles. NCERT Solutins For Class 9 Mathematics. Exercise 6.1, Exercise 6.2, Exercise 6.3


NCERT Solutions for Class IX Maths: Chapter 6 – Lines and Angles Variables

Page No: 96

Exercise 6.1

1. In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.

https://2.bp.blogspot.com/-IB6mppqSY14/VgINwWgmSDI/AAAAAAAAAQU/JXMCGh-S0TQ/s1600/class-9-maths-chapter-6-ncert-1.JPG
Answer
Given,
∠AOC + ∠BOE = 70° and ∠BOD = 40°
A/q,
∠AOC + ∠BOE +∠COE = 180° (Forms a straight line)
⇒ 70° +∠COE = 180°
⇒ ∠COE = 110°
also,
∠COE +∠BOD + ∠BOE = 180° (Forms a straight line)
⇒ 110° +40° + ∠BOE = 180°
⇒ 150° + ∠BOE = 180°
⇒ ∠BOE = 30°

Page No: 97

2. In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.

https://1.bp.blogspot.com/-tQ4WKZSspxU/VgIPn4wQONI/AAAAAAAAAQg/iRZAIq-062c/s1600/class-9-maths-chapter-6-ncert-2.JPG
Answer

Given,
∠POY = 90° and a : b = 2 : 3
A/q,
∠POY + a + b = 180°
⇒ 90° + a + b = 180°
⇒ a + b = 90°
Let a be 2x then will be 3x
2x + 3x = 90°
⇒ 5x = 90°
⇒ x = 18°
∴ a = 2×18° = 36°
and b = 3×18° = 54°
also,
b + c = 180° (Linear Pair)
⇒ 54° + c = 180°
⇒ c = 126°

3. In Fig. 6.15, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.

https://4.bp.blogspot.com/-Mu3RcGaOLpM/VgISuMiKyqI/AAAAAAAAAQs/kc2hUrcQ3d4/s1600/class-9-maths-chapter-6-ncert-3.JPG
Answer

Given,
∠PQR = ∠PRQ
To prove,
∠PQS = ∠PRT
A/q,
∠PQR +∠PQS = 180° (Linear Pair)
⇒ ∠PQS = 180° – ∠PQR — (i)
also,
∠PRQ +∠PRT = 180° (Linear Pair)
⇒ ∠PRT = 180° – ∠PRQ
⇒ ∠PRQ = 180° – ∠PQR — (ii) (∠PQR = ∠PRQ)
From (i) and (ii)
∠PQS = ∠PRT = 180° – ∠PQR
Therefore,  ∠PQS = ∠PRT

4. In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.

https://3.bp.blogspot.com/-oqFguoNIDyU/VgIUrb5dwXI/AAAAAAAAAQ0/IzhZR8fhUnk/s1600/class-9-maths-chapter-6-ncert-4.JPG

Answer

Given,
x + y = w + z
To Prove,
AOB is a line or x + y = 180° (linear pair.)
A/q,
x + y + w + z = 360° (Angles around a point.)
⇒ (x + y) +  (w + z) = 360°
⇒ (x + y) +  (x + y) = 360° (Given x + y = w + z)
⇒ 2(x + y) = 360°
⇒ (x + y) = 180°
Hence, x + y makes a linear pair. Therefore, AOB is a staright line.

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS = 1/2(∠QOS – ∠POS).

https://3.bp.blogspot.com/-JLmehKpFQ_g/VgKUD34XKMI/AAAAAAAAARE/1UfWdM4abIU/s1600/class-9-maths-chapter-6-ncert-5.JPG

Answer

Given,
OR is perpendicular to line PQ
To prove,
∠ROS = 1/2(∠QOS – ∠POS)
A/q,
∠POR = ∠ROQ = 90° (Perpendicular)
∠QOS = ∠ROQ + ∠ROS = 90° + ∠ROQ — (i)
∠POS = ∠POR – ∠ROS = 90° – ∠ROQ — (ii)
Subtracting (ii) from (i)
∠QOS – ∠POS = 90° + ∠ROQ – (90° – ∠ROQ)
⇒ ∠QOS – ∠POS = 90° + ∠ROQ – 90° + ∠ROQ
⇒ ∠QOS – ∠POS = 2∠ROQ
⇒ ∠ROS = 1/2(∠QOS – ∠POS)
Hence, Proved.

6. It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.

ALSO READ:  NCERT Solutions for Class 10th Hindi Chapter 5 : उत्साह और अट नहीं रही (Course A)

Answer

Given,
∠XYZ = 64°
YQ bisects ∠ZYP

https://2.bp.blogspot.com/-lZFbs8gFH10/VgLBnnMtT7I/AAAAAAAAARY/6eCztLY7iR4/s320/class-9-maths-chapter-6-ncert-6.png

∠XYZ +∠ZYP = 180° (Linear Pair)
⇒ 64° +∠ZYP = 180°
⇒ ∠ZYP = 116°
also, ∠ZYP = ∠ZYQ + ∠QYP
∠ZYQ = ∠QYP (YQ bisects ∠ZYP)
⇒ ∠ZYP = 2∠ZYQ
⇒ 2∠ZYQ = 116°
⇒ ∠ZYQ = 58° = ∠QYP
Now,
∠XYQ = ∠XYZ + ∠ZYQ
⇒ ∠XYQ = 64° + 58°
⇒ ∠XYQ = 122°
also,
reflex ∠QYP = 180° + ∠XYQ
∠QYP = 180° + 122°
⇒ ∠QYP = 302°

Page No: 103

Exercise 6.2

1. In Fig. 6.28, find the values of x and y and then show that AB || CD.

https://3.bp.blogspot.com/-kh614Ps7lHU/VgL0cMz7sbI/AAAAAAAAARk/1Tr_qeVpNZM/s1600/class-9-maths-chapter-6-ncert-7.JPG

Answer

x + 50° = 180° (Linear pair)
⇒ x = 130°
also,
y = 130° (Vertically opposite)
Now,
x = y = 130° (Alternate interior angles)
Alternate interior angles are equal.
Therefore, AB || CD.

Page No: 104

2. In Fig. 6.29, if AB || CD, CD || EF and y : z = 3 : 7, find x.

https://2.bp.blogspot.com/-5_h6-3wwrAA/VgNgCN-vqcI/AAAAAAAAASE/4ty-jBI59_E/s1600/class-9-maths-chapter-6-ncert-7.JPG

 

Answer

Given,
AB || CD and CD || EF
y : z = 3 : 7
Now,
x + y = 180° (Angles on the same side of transversal.)
also,
∠O = z (Corresponding angles)
and, y + ∠O = 180° (Linear pair)
⇒ y + z = 180°
A/q,
y = 3w and z = 7w
3w + 7w = 180°
⇒ 10 w = 180°
⇒ w = 18°
∴ y = 3×18° = 54°
and, z = 7×18° = 126°
Now,
x + y = 180°
⇒ x + 54° = 180°
⇒ x = 126°

3. In Fig. 6.30, if AB || CD, EF ⊥ CD and ∠GED = 126°, find ∠AGE, ∠GEF and ∠FGE.

https://4.bp.blogspot.com/-Ntifgrc1Lsk/VgNiYPybkwI/AAAAAAAAASQ/Et7-PurQ6jU/s1600/class-9-maths-chapter-6-ncert-8.JPG
Answer

Given,
AB || CD
EF ⊥ CD
∠GED = 126°
A/q,
∠FED = 90° (EF ⊥ CD)
Now,
∠AGE = ∠GED (Since, AB || CD and GE is transversal. Alternate interior angles.)
∴ ∠AGE = 126°
Also, ∠GEF = ∠GED – ∠FED
⇒ ∠GEF = 126° – 90°
⇒ ∠GEF = 36°
Now,
∠FGE +∠AGE = 180° (Linear pair)
⇒ ∠FGE = 180° – 126°
⇒ ∠FGE = 54°

4. In Fig. 6.31, if PQ || ST, ∠PQR = 110° and ∠RST = 130°, find ∠QRS.
[Hint : Draw a line parallel to ST through point R.]

https://2.bp.blogspot.com/-9bjriHYR6tA/VgPF4B-u4sI/AAAAAAAAASk/s1UsrVXdLDY/s1600/class-9-maths-chapter-6-ncert-9.JPG

Answer

Given,

PQ || ST, ∠PQR = 110° and ∠RST = 130°

Construction,

A line XY parallel to PQ and ST is drawn.

https://4.bp.blogspot.com/-iVAVgVcHwFo/VgPMGbr6VGI/AAAAAAAAASw/13IcVPU1CqQ/s320/class-9-maths-chapter-6-ncert-9.JPG

∠PQR + ∠QRX = 180° (Angles on the same side of transversal.)
⇒ 110° + ∠QRX = 180°
⇒ ∠QRX = 70°
Also,
∠RST + ∠SRY = 180° (Angles on the same side of transversal.)
⇒ 130° + ∠SRY = 180°
⇒ ∠SRY = 50°
Now,
∠QRX +∠SRY + ∠QRS = 180°
⇒ 70° + 50° + ∠QRS = 180°
⇒ ∠QRS = 60°

5. In Fig. 6.32, if AB || CD, ∠APQ = 50° and ∠PRD = 127°, find x and y.

https://3.bp.blogspot.com/-8XvzBNQR2Lk/VgPR6aCy4YI/AAAAAAAAATA/7-Odv7q3ZoU/s1600/class-9-maths-chapter-6-ncert-10.JPG

Answer

Given,
AB || CD, ∠APQ = 50° and ∠PRD = 127°
A/q,
x = 50° (Alternate interior angles.)
∠PRD + ∠RPB = 180° (Angles on the same side of transversal.)
⇒ 127° + ∠RPB = 180°
⇒ ∠RPB = 53°
Now,
y + 50° + ∠RPB = 180° (AB is a straight line.)
⇒ y + 50° + 53° = 180°
⇒ y + 103° = 180°
⇒ y = 77°

ALSO READ:  NCERT Solutions For Class 7th Maths Chapter 13 : Exponents and Powers

6. In Fig. 6.33, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.

https://2.bp.blogspot.com/-It66fkb6vh8/V5Oct56s2cI/AAAAAAAABW4/fv-byMcQfrk-2GcB7UsFzYcCnQwBDZ0wgCLcB/s1600/class-9-lines-and-angles-ncert.JPG

Answer

https://3.bp.blogspot.com/-HB7ELOuyq9s/V5OgVNTCwAI/AAAAAAAABXI/FuvD-aQ-TdQ0XhvALwTE4sxmirNrcPmkACLcB/s320/class-9-lines-and-angles-ncert.JPG

Let us draw BE ⟂ PQ and CF ⟂ RS.
As PQ || RS
So, BE || CF

By laws of reflection we know that,

Angle of incidence = Angle of reflection

Thus, ∠1 = ∠2 and ∠3 = ∠4  — (i)

also, ∠2 = ∠3     (alternate interior angles because BE || CF and a transversal line BC cuts them at B and C)    — (ii)
From (i) and (ii),

∠1 + ∠2 = ∠3 + ∠4
⇒ ∠ABC = ∠DCB

⇒ AB || CD      (alternate interior angles are equal)

 

Page No: 107

Exercise 6.3

1. In Fig. 6.39, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠SPR = 135° and ∠PQT = 110°, find ∠PRQ.

https://1.bp.blogspot.com/-2xougqWI5k0/VgPUQBL9UtI/AAAAAAAAATM/N8F10Y0XgQE/s1600/class-9-maths-chapter-6-ncert-11.JPG

Answer

Given,
∠SPR = 135° and ∠PQT = 110°
A/q,
∠SPR +∠QPR = 180° (SQ is a straight line.)
⇒ 135° +∠QPR = 180°
⇒ ∠QPR = 45°
also,
∠PQT +∠PQR = 180° (TR is a straight line.)
⇒ 110° +∠PQR = 180°
⇒ ∠PQR = 70°
Now,
∠PQR +∠QPR + ∠PRQ = 180° (Sum of the interior angles of the triangle.)
⇒ 70° + 45° + ∠PRQ = 180°
⇒ 115° + ∠PRQ = 180°
⇒ ∠PRQ = 65°

2. In Fig. 6.40, ∠X = 62°, ∠XYZ = 54°. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of Δ XYZ, find ∠OZY and ∠YOZ.

https://4.bp.blogspot.com/-5GGD8Hq6WnU/VgPWXtv5ghI/AAAAAAAAATY/qhX9L0sv9Us/s1600/class-9-maths-chapter-6-ncert-12.JPG

Answer

Given,
∠X = 62°, ∠XYZ = 54°
YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively.
A/q,
∠X +∠XYZ + ∠XZY = 180° (Sum of the interior angles of the triangle.)
⇒ 62° + 54° + ∠XZY = 180°
⇒ 116° + ∠XZY = 180°
⇒ ∠XZY = 64°
Now,
∠OZY = 1/2∠XZY (ZO is the bisector.)
⇒ ∠OZY = 32°
also,
∠OYZ = 1/2∠XYZ (YO is the bisector.)
⇒ ∠OYZ = 27°
Now,
∠OZY +∠OYZ + ∠O = 180° (Sum of the interior angles of the triangle.)
⇒ 32° + 27° + ∠O = 180°
⇒ 59° + ∠O = 180°
⇒ ∠O = 121°

3. In Fig. 6.41, if AB || DE, ∠BAC = 35° and ∠CDE = 53°, find ∠DCE.

https://4.bp.blogspot.com/-Wc06kid2gX0/VgPYk7s9KxI/AAAAAAAAATk/k4CmbbYELco/s1600/class-9-maths-chapter-6-ncert-13.JPG
Answer

Given,
AB || DE, ∠BAC = 35° and ∠ CDE = 53°
A/q,
∠BAC = ∠CED (Alternate interior angles.)
∴ ∠CED = 35°
Now,
∠DCE +∠CED + ∠CDE = 180° (Sum of the interior angles of the triangle.)
⇒ ∠DCE + 35° + 53° = 180°
⇒ ∠DCE + 88° = 180°
⇒ ∠DCE = 92°

ALSO READ:  NCERT Solutions for Class 10th Hindi Chapter 3 : दोहे (Course B)

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°, find ∠SQT.

https://3.bp.blogspot.com/-zIY-B1dLUhw/VgPc05Sxq6I/AAAAAAAAATw/nHbtL9yjRl8/s1600/class-9-maths-chapter-6-ncert-14.JPG
Answer

Given,
∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°
A/q,
∠PRT +∠RPT + ∠PTR = 180° (Sum of the interior angles of the triangle.)
⇒ 40° + 95° + ∠PTR = 180°
⇒ 40° + 95° + ∠PTR = 180°
⇒ 135° + ∠PTR = 180°
⇒ ∠PTR = 45°
∠PTR = ∠STQ = 45° (Vertically opposite angles.)
Now,
∠TSQ +∠PTR + ∠SQT = 180° (Sum of the interior angles of the triangle.)
⇒ 75° + 45° + ∠SQT = 180°
⇒ 120° + ∠SQT = 180°
⇒ ∠SQT = 60°

Page No: 108

5. In Fig. 6.43, if PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of x and y.

https://4.bp.blogspot.com/-T1mCrmh6824/VgPmAlRgcnI/AAAAAAAAAUA/tooAmKZDPAw/s1600/class-9-maths-chapter-6-ncert-15.JPG

Answer

Given,
PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°
A/q,
x +∠SQR = ∠QRT (Alternate angles  as QR is transveersal.)
⇒ x + 28° = 65°
⇒ x = 37°
also,
∠QSR = x
⇒ ∠QSR = 37°
also,
∠QRS +∠QRT = 180° (Linea pair)
⇒ ∠QRS + 65° = 180°
⇒ ∠QRS = 115°
Now,
∠P + ∠Q+ ∠R +∠S = 360° (Sum of the angles in a quadrilateral.)
⇒ 90° + 65° + 115° + ∠S = 360°
⇒ 270° + y + ∠QSR = 360°
⇒ 270° + y + 37° = 360°
⇒ 307° + y = 360°
⇒ y = 53°

6. In Fig. 6.44, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR = 1/2∠QPR.

https://2.bp.blogspot.com/-jX5LcoQ0xw4/VgQdV3XTOiI/AAAAAAAAAUQ/puJLTyXZdo8/s1600/class-9-maths-chapter-6-ncert-16.JPG
Answer

Given,
Bisectors of ∠PQR and ∠PRS meet at point T.
To prove,
∠QTR = 1/2∠QPR.
Proof,
∠TRS = ∠TQR +∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)
⇒ ∠QTR = ∠TRS – ∠TQR — (i)
also,
∠SRP = ∠QPR + ∠PQR
⇒ 2∠TRS = ∠QPR + 2∠TQR
⇒ ∠QPR =  2∠TRS – 2∠TQR
⇒ 1/2∠QPR =  ∠TRS – ∠TQR — (ii)
Equating (i) and (ii)
∠QTR – ∠TQR = 1/2∠QPR
Hence proved.

Do You Liked Our Contents? If Yes! Then Please Spare Us Some Time By Commenting Below. Or To Get Daily Minute by Minute Updates On Facebook Twitter and Google+ From Us (Indiashines.in) Please Like Us On Facebook , Follow Us On Twitter and Follow Us On Google+ . If You also Want To Ask Us/Experts Any Questions Then Please Join Our Forum Here and Be Our Exclusive Member.



GO BACK TO CLASS IX MATHS ALL CHAPTERS SOLUTIONS

You May Like :

There Are 2 Comments On This Article.

  1. Bhagwad Gita

    if you are in an apartment that is confined, then folding tables would be very well suited for you;;

Leave a Reply

Your email address will not be published. Required fields are marked *

31 + = 39